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ABSTRACT 

In this paper we have discussed the generalization of convexity in a space and noted some interesting geometry 

arising from it. The underlying space is , d >1, is a d- dimensional Euclidean space. Convexity of a set of points in  

is introduced and an operator on such sets namely the convex hull is also defined. Under this operator convexhull, we 

formulate some propositions. Since, convexity is intimately related to the connectedness of the space , generalizations to 

lines and planes brings to fore some topological restrictions. The study gains importance due to the global nature of the 

problem. Richard Polleck, Raphael Wenger and others investigated this problem, we refer to [1][2][3] [4] Jacob E. 

Goodman extends this study owing to its relationship with the discrete geometric nature of the set[1]. Section 2 has some 

basic concepts from geometry and analysis. Section 3  deals with propositions and scope of the problem. 
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INTRODUCTION  

Convex Sets of  and Linear Translates 

  Let  , d> 1 be the d-dimensional Euclidean space and the topology is the induced topology arising from the 

Euclidean metric.Let S , either finite or locally finite. If S is locally finite then every point of S has a neighbourhood 

which has finite number of points. In any case we would expect S to be discrete. 

A linear transformation T: →  is a map which is completely determined by its action on basis elements. In 

geometry we are trying to get a linear translate of the subspaces  of  and quotienting  over such subspaces. We will 

explain this with some details. 

If v is vector space over H and W V, is a subspace over H, where V and W are finite dimensional. Then  

the quotient space where the elements are cosets is also a vector space over H. The members of   are the cosets. This 

is clear from linear algebra of vector spaces. 

Definition 2.1 Let ,of points in . S is said to be convex if the line segment joining any two points of S 

lies completely in S . For example , If S is a line segment then S is convex. A line segment is defined by the following 

property. If x,y  S and 0< <1, ⅄x+(1-⅄)y  S. 

Isf S is such that any two points of S joined by the line segment, lies in S then S is convex. See figure (i) and (ii) 

for S  
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                                               Figure (i)                                                                        Figure (ii) 

Basic Properties of a Convex Set  

Let H be any set associated with S  is the set called convex hull of S, denoted by ConvS, which contains S. 

If S is a set of four points then its convex hull is as shown in the figure ( see figure (iii)). 

S = {a,b,c,d}            

 

Figure (iii) 

Convex hull of four points  figure  (iii)                      

Clearly Conv S Satisfies the  following Property 

• For the sets S and T, S  T , then ConvS  ConvT 

Convex hull satisfies the monotonicity property 

• Conv(ConvS)=ConvS 

This property is the idempotency property. 

• Let Conv S=S and x,y  S, further x  y ie x and y are different. Then y Conv(S U{y})  implies x∉Conv(SU 

{y}).  

 The property  3 is called anti-exchange property of the convex hull operator. 

 Observe that , property 3 induces a partial order on the sets of   . The following proposition implies this 

property of anti-exchange. 

Proposition 2.3 Let S  be convex and ConvS denote its convex hull , then , the complete of S is partially 

ordered under anti-exchange property of convex hull. 
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Proof: Suppose the point set of be convex and con V S denote its convex hull such that con V S= S define 

partial order in S’, the compliment of S by the anti-exchange property i.e , x, y ’ ,  x   y, whenever    

y, and x con V (S U  )  con V (S U  ) 

Clearly x  x 

Suppose x   y and  y   x,   x, y ’    y , then x = y 

≠x con V (S U  )  con V (S U  ) 

For y   x implies 

y con V (S U  ) x  con V (S U  ) 

Together we infer that x = y 

 Anti-exchange property is clearly transititve. x   y and  y   z for all x, y ,z  S x  y , 

 y  z   x   z .  

Thus , anti-exchange property on s’ partitions S’ into equivalence classes 

Remark:1.2.3 The property antiexchange gives us an idea that  how far away are the point from a convex set. 

• The three properties defined above are generally called the convex hull operations and gives the convexity 

structure. 

Definition 1.2.4 An affine invariance of the convexity structure is that convex hull operating commuter with the 

action of the affine group. 

Let A( d ,  =  : l GL(  d, } andbe the group of non-singular transformations 

with translations. If σ  A ( d , and  S ⊂ .Then S is said to be convex if 

  Con V S= S  

Under  σ : S  S’ 

If x  conV S then σ  con V S’ 

In other words naturally. 

Convexity Structure  for Line Sets and in General K-Flats 

In this section we generalize the notion of convexity for sets of , which are not point sets but they are line sets 

or more generally k=flats. This leads to what is known as Geometric transversal theory. From differential geometric point 

of view  there are examples , which provide us the notion of transversality on surfaces , and in manifolds of higher 

dimensions we give two examples in each  of these cases. 

Following theorem due to [3] provides the convexity structure for G K, .d are Grassmanians. 
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Theorem1.3.1 There is no notion of convexity for lines or higher dimensional flats that is non-singular –affine 

invariant, satisfying anti-exchange property in which all  convex sets are connected. 

For convexity to hold for the line (or K- flat) sets , we have to give up the connectedness. Thus  , if we  assume 

that a convex set of flats are not always  connected then we notice a rich theory , extending the  notion of convexity and  

properties associated with the point sets. 

 Remark 1.3.1  

If the space is one-dimensional then the points would sit on the line. if the space is two dimensional . then the 

points and lines occur in this two dimensional setting. Points lying both on  lines and plane itself. Thus, points and lines are 

endowed with the property  ‘surrounded by’ .This property of being ‘surrounded by’ is a key to generalize the convexity 

structure to the sets whose points are lines and K-flats in  

In the context of a flat F the notion of convex hull is defined by taking a re-look into the point sets of  .  

Let F denote a K- flat , then a hyper-plane will be a flat of co=dimension 1. 

Definition 1.3.2 : Let x be a point in a flat F . Then we say that the point x in F is surrounded by a set of points S 

in F if any hyper-plane H in F passing through x lies strictly between two parallel hyper-planes H1 and  H2 in F each 

containing a point of S  

The following figure is indicative and the description clearly suggests that such a hyper-plane is trapped by points 

of S in case it tries to escape by a continuous translation to infinity 

 

Figure (iv) 

From this definition the following properties are hold good 

• x  conv S if and only if there is a flat F containing x with which x is surrounded by the points of S lying in F. 

• Sometimes S may be a lower dimensional set and therefore by saying x is surrounded by the points of S instead of 

it being surrounded by the points of S lying in F may not hold.  

• x  conv S if every convex point set meeting every point of S also meets x. This is quite evident as it amounts to 
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say that conv S is the intersection of all the convex point sets containing S. 

Further ‘surrounded  by’ makes a perfect meaning when the basic objects are flats of fixed dimension k , k =1,2,3-

----- rather than simply points. Further the properties 1 and 2 are valid in that setting as equivalent statements. Moreover 

they imply the basic property of convex structure associated with the convex hull operations in . This leads to define 

the convex hull of k-flats  

Definition 1.3.3: Let  denote a set of k-flats in  Conv denote its convex hull. A 

 k-flat  belongs to Conv  in if it satisfies either of the following conditions 

• There is a flat F containing  within which ’ is surrounded by the flat of  lying in F 

•  Every convex point set  meeting all the members of  also meets . 

CONCLUSIONS 

These definitions will enable us to provide examples for Geometric transversal theory. We have considered a 

discretized version of a manifold  and the subsets of them is studied for the convexity structure. 
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