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ABSTRACT

In this paper we have discussed the generalizatiaronvexity in a space and noted some interegjemmetry

arising from it. The underlying space%d , d >1, is a d- dimensional Euclidean space. Coitywex a set of points irlld

is introduced and an operator on such sets narhelcanvex hull is also defined. Under this operatmmvexhull, we

formulate some propositions. Since, convexity temately related to the connectedness of the spgemeralizations to
lines and planes brings to fore some topologicstri@ions. The study gains importance due to tleba nature of the
problem. Richard Polleck, Raphael Wenger and otimrsstigated this problem, we refer to [1][2][3}][Jacob E.

Goodman extends this study owing to its relatiomstith the discrete geometric nature of the setfHction 2 has some

basic concepts from geometry and analysis. Se8tideals with propositions and scope of the problem
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INTRODUCTION
Convex Sets o*.ld and Linear Translates

Let R , d> 1 be the d-dimensional Euclidean space aaddpology is the induced topology arising from the
Euclidean metric.Let £ R? , either finite or locally finite. If S is locallfinite then every point of S has a neighbourhood
which has finite number of points. In any case voeild expect S to be discrete.

A linear transformation TR? R js g map which is completely determined by itscecon basis elements. In

geometry we are trying to get a linear translatthefsubspaces Rd and quotientingﬂd over such subspaces. We will

explain this with some details.

v
If v is vector space over H andfV V, is a subspace over H, where V and W are fidiiteensional. Then f!W

v
the quotient space where the elements are cosalsois vector space over H. The members l'S‘W are the cosets. This

is clear from linear algebra of vector spaces.

Definition 2.1 Let SCm? ,of points in]lﬂt . Sis said to be convex if the line segment jajramy two points of S

lies completely in S . For example , If S is a Isegment then S is convex. A line segment is deflmethe following

property. If x,y€ S and 0<h <1, Ax+(1-A)y € S.

Isf S is such that any two points of S joined by line segment, lies in S then S is convex. Saedigi) and (ii)
for S
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Figure (i) Figure (ii)
Basic Properties of a Convex Set
Let H be any set associated with S is the setd¢abnvex hull of S, denoted by ConvS, which corst&.
If S is a set of four points then its convex halhs shown in the figure ( see figure (iii)).

S ={a,b,c,d}

a b C
Figure (iii)
Convex hull of four points figure (iii)
Clearly Conv S Satisfies the following Property
+ Forthe sets Sand T,(5 T, then Conv€C ConvT
Convex hull satisfies the monotonicity property
e Conv(ConvS)=ConvS
This property is the idempotency property.

« LetConv S=Sand x% S, further & vy ie x and y are different. TherEy Conv(S U{y}) implies x¢Conv(SU
{y}.

The property 3 is called anti-exchange propeftyie convex hull operator.

Observe that , property 3 induces a partial oatethe sets of R?  The following proposition implies this

property of anti-exchange.

Proposition 2.3Let S CR? pe convex and ConvS denote its convex hull , fienthe complete of S is partially

ordered under anti-exchange property of convex hull
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Proof: Suppose the point set Ed be convex and con V S denote its convex hull shah ¢on V S= S define
partial order in S, the compliment of S by theiaxchange property i.e , x,§= ', x = y, whenever® #
y,and>€ conV (SU¥} )= ¥ € conV (S Ux})

Clearly x = x

Supposex = yand y= x, x,yES' X ¥ y thenx=y
#x€ conV (SU¥})= ¥ & conv (s Ux})

Fory = ximplies

y€ conV (S Ux})x€ conV (S U¥})

Together we infer that x =y

Anti-exchange property is clearly transititve 5 yand y= zforallx,y,zZE Sx¥ vy,

y¥F z® x = 7.

Thus , anti-exchange property on s’ partitionsrtd iequivalence classes
Remark:1.2.3 The property antiexchange gives udemthat how far away are the point from a corsestx

» The three properties defined above are generallgdcdhe convex hull operations and gives the caitye

structure.

Definition 1.2.4 An affine invariance of the conutgxstructure is that convex hull operating commuwtéth the

action of the affine group.

I a:)
Let A(d ,RT) = I (n 1/ ;1€ GL( d,R"), @ € R'd } andbe the group of non-singular transformations

with translations. 16 € A (d ,R") and Sc R? Then S is said to be convex if

ConVS=S

Underc:S —* S
Ifx € conV Sthers € conV S
In other wordR“ ad mits convexity structure naturally.

Convexity Structure for Line Sets and in General KFlats

In this section we generalize the notion of contyefar sets ofnd , which are not point sets but they are line sets
or more generally k=flats. This leads to what i®wn as Geometric transversal theory. From difféa¢igeometric point
of view there are examples , which provide us rtbéon of transversality on surfaces , and in n@d# of higher

dimensions we give two examples in each of thases

Following theorem due to [3] provides the convesitsucture for G, qare Grassmanians.
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Theorem1.3.1 There is no notion of convexity feeb or higher dimensional flats that is non-singuiaffine

invariant, satisfying anti-exchange property inethall convex sets are connected.

For convexity to hold for the line (or K- flat) sef we have to give up the connectedness. Théisve iassume
that a convex set of flats are not always conmketiien we notice a rich theory , extending theiomobf convexity and

properties associated with the point sets.
Remark 1.3.1

If the space is one-dimensional then the pointsladvsit on the line. if the space is two dimensiongtien the
points and lines occur in this two dimensionalisgttPoints lying both on lines and plane its€tius, points and lines are

endowed with the property ‘surrounded by’ .Thisgerty of being ‘surrounded by’ is a key to geneeathe convexity

structure to the sets whose points are lines afidt&in R

In the context of a flat F the notion of convexlhsidefined by taking a re-look into the pointsset R .
Let F denote a K- flat , then a hyper-plane willsbftat of co=dimension 1.

Definition 1.3.2 : Let x be a point in a flat F hdh we say that the point x in F is surrounded bgteof points S
in F if any hyper-plane H in F passing through eslistrictly between two parallel hyper-planesdid H, in F each
containing a point of S

The following figure is indicative and the descidpt clearly suggests that such a hyper-plane pp@d by points

of S in case it tries to escape by a continuousstation to infinity

Figure (iv)

From this definition the following properties arelth good

e X € conv Sifand only if there is a flat F containixgvith which x is surrounded by the points of $ityin F.

* Sometimes S may be a lower dimensional set andftiterby saying x is surrounded by the points ofstead of

it being surrounded by the points of S lying in Bynmot hold.

* X € conv S if every convex point set meeting everynpof S also meets x. This is quite evident asnbants to
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say that conv S is the intersection of all the @xnpoint sets containing S.

Further ‘surrounded by’ makes a perfect meaningmiie basic objects are flats of fixed dimensigk k1,2,3-

----- rather than simply points. Further the prdjgsr1 and 2 are valid in that setting as equivadéeements. Moreover

they imply the basic property of convex structussaziated with the convex hull operationsﬂr%I . This leads to define

the convex hull of k-flats

Definition 1.3.3: LetE denote a set of k-flats iﬂd- convE denote its convex hull. A
k-flat £ belongs to Con€ in R if it satisfies either of the following conditions

» Thereisaflat F containing within which £ " is surrounded by the flat & lying in F

»  Every convex point set meeting all the member& oflso meet§ .
CONCLUSIONS

These definitions will enable us to provide exarapler Geometric transversal theory. We have consiia

discretized version of a manifold and the subskteem is studied for the convexity structure.
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